FIELD ASSESSMENT REPORT

on

E45/5573 Moolyella Lithium Property, Western Australia

for

Sunmirror AG

24 August 2021

by

Contents

1.	INTRODUCTION	
1.1	Location and Access	
2.	REGIONAL GEOLOGY	5
3.	FIELD INVESTIGATIONS	
3.1	Area 1 - Pegmatite Gully	7
	3.1.1 South of Area 1	12
	3.1.2 North of Area 1	13
3.2	Area 2	14
3.3	Area 3	15
3.4	Area 4	17
3.5	Area 5	
3.6	Area 6	19
3.7	Area 7	23
3.8	Video Capture	23
3.9	Other Areas Visited	23
4.	GEOCHEMICAL SAMPLING	25
4.1	Sample Collection	25
4.2	Analytical Results	26
5.	CONCLUSIONS	27
6.	RECOMMENDATIONS	28
7.	REFERENCES	29

APPENDIX 1 - SAMPLING

APPENDIX 2 - PETROLOGY

APPENDIX 3 - ANALYTICAL RESULTS

APPENDIX 4 – HYPERLINKS

1. INTRODUCTION

Sunmirror AG (Sunmirror) engaged Geonomik Pty Ltd (Geonomik) to undertake a field assessment of their Moolyella Lithium Property (the Project) in Western Australia. This report summarises field work completed by Geonomik on the Moolyella Project during the period 07 July 2021 to 14 July 2021 and the analytical results of samples collected.

1.1 Location and Access

The Moolyella Project is located approximately 160 km southeast of Port Hedland and 15 km east of the settlement of Marble Bar, in the Pilbara Region of Western Australia. Access is via sealed road from Port Hedland (Figures 1 & 2).

The Moolyella Property consists of one exploration licence (E54/5573) covering an area of approximately 93 km² located in the East Pilbara Shire.

Figure 1. Location Map of Moolyella Lithium Project

2. REGIONAL GEOLOGY

The Moolyella Lithium Project is located within the East Pilbara Terrane, which comprises large domal granitic complexes surrounded and separated by narrow curvilinear belts of steeply dipping greenstone successions. The Project tenements cover a portion of the Mt. Edgar Dome granitic complex. It comprises of rocks assigned to five supersuites with varying ages between 3484 and 2831 Ma. The granitic complex is overlain and surrounded by metavolcanics and metasedimentary rocks of the Marble Bar Greenstone belt (ages between 3530-2950 Ma). The core of the dome contains several moderately to weakly foliated granitic intrusions of the Emu Pool Supersuite. In the Moolyella project area banding and parallel tectonic foliation in the Fig Tree Gneiss were noted to be sub-horizontal and deformed by open folds lacking any preferred orientation, which suggest that the area is situated on the crest of a subsidiary dome. The Moolyella Monzogranite intruded the Mt Edgar Dome during a post tectonic orogenic period when the East Pilbara Terrane was being deeply eroded (Figures 3 and 4).

Figure 3. Satellite Photo outlining the Mt Edgar Granitic Complex Source: Google Earth 2021

Figure 4. Simplified Geological Map of the Mount Edgar Dome showing ages of granitic intrusions classified as supersuites. Oldest Granitic units are concentrated along the southwest and southeast granitic rim margins of the granite complex.

Source: Gardiner, et. al., 2018

3. FIELD INVESTIGATIONS

Seven areas were selected to carry out field investigations across the Moolyella project area based on recent work by Dr Sandy Archibald Technical Report (Archibald, 2021). The 7 areas were named 1 to 7 and their locations are shown in figure 5. Seven days of field work were completed by Arnel Mendoza (Principal Geologist of Geonomik) and Essam Wahdan (Geological Consultant) on the Moolyella Project during the period 07 July 2021 to 14 July 2021. The field investigations focused on the following items:

- Locate outcropping pegmatites and for each pegmatite outcrop, collect rock samples, measure the density, percentage and dimensions of pegmatite bodies.
- Investigate potential development of spodumene-bearing pegmatites where ENE trending Wattawoona metabasalts interfoliated with the Fig Tree orthogneiss.
- Investigate potential pegmatite development at the junction of N-S and NE-SW trending faults.
- Investigate junction area of N-S splay faults with the edge of the Johansen Monzogranite.

The analytical results for the samples submitted to the laboratory were received on 24 August after a 4-week turnaround since delivery. Perth laboratories are experiencing record workloads due to the high level of exploration activity throughout the state and turnaround times have been impacted.

Figure 5. Areas Identified with potential mineralization by Archibald (2021).

3.1 Area 1 - Pegmatite Gully

The Pegmatite Gully area was found to consist mostly of outcropping granites along the central area of the tenement. mineralization occurs as a series outcroppings of shallow easterly dipping (20-30°) spodumene?-bearing pegmatites dykes/layers that vary in thickness of 1 to 3 m, and with a strike of over 1 km in a north-south direction. evidence of potential mineralization extension as pegmatite plunging further south. Locations of the samples collected are shown in Figure 6 together with the sample number.

Figure 6. Ore zone strike extent potential running North South further possible extension underneath alluvial cover further south.

Pegmatite Gully

Series out-cropping of shallow easterly dipping (20-30degrees) spodumene-bearing pegmatites layers that vary in thickness of 1 to 3m, and strike (over 1km) in a north-south direction, potential mineralization extension as pegmatite plunging to south

Figure 7. Outcrops of pegmatite with repetitions from the top of hill to its base. Closer views of these outcrops are shown on Figures 8, 9 and 10.

Figure 8. Granites with repetitions of pegmatites layers looking North along main track in Pegmatite Gully.

Figure 9a. Pegmatite plunging to the south.

Figure 9b. Pegmatite outcrop approximately 2m wide and appears gently folded (Looking North).

Figure 10. Outcrop approximately 2-3m wide along track in the centre of Pegmatite gully looking Southeast.

This structural phenomena of folding and domes shape are well observed throughout the project grounds and could be due to episodes of lateral compression during a tectonic event. The folding event is interpreted to postdate the pegmatite-mineralizing event.

The effect of folding on the exposure of pegmatite at surface is illustrated in Figures 11 and 12.

Figure 11. Schematic diagram of folding of pegmatitic sequences with the granite structure illustrating continuity of pegmatites under cover.

Figure 12. Schematic diagram showing the gently folded pegmatite layers of repetition running in the North South strike direction and view looking East.

3.1.1 South of Area 1

Figure 13: Sub-vertical spodumene? -bearing pegmatites southern extension of Area 1

Figure 14. Sub- vertical spodumene-bearing pegmatite dykes outcropping further south of Pegmatite Gully. Close up photo of a dyke outcrop South of Pegmatite Gully (GPS location 35) looking North.

3.1.2 North of Area 1

Figure 15. Outcrop of Pegmatite North of Pegmatite Gully (GPS Location 49) looking South) Approximately 2.-3m wide, part of a domal structure extension northwest of pegmatite gully.

3.2 Area 2

No major outcrops were located in in Area 2 with colluvium and alluvium blanketing the area.

Figure16 Looking South from the centre of Area 2.

Figure 17. Looking SE from the centre of Area 2.

Figure 18. Looking north from the centre of Area 2.

3.3 Area 3

Area 3 was selected because of the junction of a interpreted NW and NS faults structure (figure 5). The field investigation identified a 1 to 3 m wide zone hosting barren quartz veins, cutting through granite with no visible pegmatite veins. and appears to be a post granitic intrusion, fault structure.

Figure 19. Massive quartz veins striking N-S. Area was identified.

3.4 Area 4

This area has limited granite exposure at ground level with little or no relief. Outcrops of narrow to very narrow pegmatitic veins were observed at this location.

Figure 20. Photo of pegmatitic narrow veins on surface of a granite outcrop.

Figure 21. Narrow occurrence of pegmatite on Area 4 approximately 40-50cm wide.

3.5 Area 5

At area 5 a split in a N-S fault was interpreted. The field investigation found signs of brecciation and pegmatitic outcrop scattered around this location.

Figure 22. Identified structurally controlled splay fault potential mineralization.

Figure 23. Smaller outcrops of a granitic pegmatite on Area 5, near GPS location 10.

Figure 24 Area 5 Photo taken in between GPS location 10 and 12, no sample was taken of this pegmatite.

3.6 Area 6

Area 6 is the location of a historical tin mining area (Old Tin Mine). The field investigation found that the previously mined ore outcrops in a dome shape structure, hosting steep to sub-vertical swarms of pegmatite dykes ranging from narrow veins to 2-3 m thick. Granitic "dome-and-keel" outcrops patterns are common throughout the area. This pattern suggests either the result of cross-folding or core complex formation.

Figure 25. Photo looking west toward the Old Tin Mine on the southern end of the granite structure with pegmatite outcropping on surface

The area of potential mineralization is shown by the dotted green circle on Figures 22 and 26. Samples 14 to 17 were taken from in the vicinity of this mine (Figures 27-28a,b,c).

Figure 26. Area 6 Location possible extent of mineralization as shown by the green circle.

Figure 27. Pegmatite outcropping on the granite approximately 1-2 m wide on the north-eastern side of the Old Tin Mine

Figures 28 a,b,c Pegmatites near surface about 100m NE of the Old Tin Mine

3.7 Area 7

Area 7 was not thoroughly investigated due to time constraints. The area near the main highway was found to be mainly alluvial cover and it will require soil sampling or auger drilling to test the area. The Wattawoona Basalts outcrops are surrounded by shallow depression of mainly alluvial cover with no pegmatite outcrop found.

3.8 Video Capture

The videos of significant areas visited are shown in Appendix 4.

3.9 Other Areas Visited

An area 500 m southwest of Area 3 was inspected as evidence of historical alluvial tin mining was noted.

Photos of Alluvial workings around Eddy's plant, the old tailings dam west of Eddy's Plant and Pilbara Plant is shown on Figures 29 - 31. Soil samples were taken from the tailings for laboratory analysis. A global resource estimate was done in 2021 for the Tailings in the tenement. Moolyella Tailings Inferred Resource Estimate is 1.91Mt at 60ppm Sn and 20pmm Ta (Borg, 2012).

Figure 29. Historical Eddy's Plant Area looking North, alluvial workings can be recognised seen on surface.

Figure 30. Old Tailings Dam looking Northwest and South of Area 3 where sample locations GPS numbers 40 - 44 were taken (Appendix 1 Figure 4.)

Figure 31. The view of the tailings Dam from Eddy's plant area looking West.

Figure 32. Historical Pilbara Plant extracting concentrations of Tin from nearby orebody and alluvial deposits

Figure 33. Tailings Pond adjacent to Pilbara Plant where soil samples 46-48 were taken (Figure 4 Appendix 1).

4. **GEOCHEMICAL SAMPLING**

4.1 Sample Collection

The field samples collected were taken to the Nagrom laboratory in Armadale near Perth in Western Australia. Total number of samples include 5 soils samples and 28 rock chip samples. Each sample sent to the laboratory was photographed for documentation (these photographs are provided in Appendix 4 hyperlinks).

Five samples were also selected for petrographic analysis and are being prepared as thin sections which will be submitted to a petrologist for identification of minerals, description of rock forming textures and a rock type classification (Appendix 2).

4.2 Analytical Results

Nagrom laboratories were instructed to test for LCT REE and other indicator minerals related to Critical Elements for the rock chip samples while the soils where tested for Au and Base metals as well.

Significant assay results are shown on Table 1.

Appendix 3 provides the raw data reported by Nagrom laboratory for all the samples submitted.

The highest grade returned was 6190ppm Li (Sample No. MY00035). This assay was repeated for checking and returned 6300ppm Li.

Sample No	GPS location No	Area	Comment	Туре	Easting	Northing	Elevation	Bearing	Li	Sn	Та	Cs	Be	Rb
MY00021	37	1	END OF QTZ VEIN	ROCK CHIPS	800731.8	7660875.186	199.112	40.51	460	80	22	28	7	1401
MY00022	38	1	DUMPS NORTHAREA 1	ROCK CHIPS	800721.2	7658370.479	220.574	113.33	170	22	25	19	163	1155
MY00030	49	1	PEGMATITE ROCK CHIP SAMPLE	NO SAMPLE	781958.8	7655445.697	182.735	257	260	318	25	35	12	2212
MY00033	52	1	A1 SAMPLE	SOILS	797657.1	7660961.759	173.101	320.56	130	29	39	20	2	1429
MY00034	50	1	A1 SAMPLE	ROCK CHIPS	797654.1	7660947.961	176.322	320.3	680	158	34	30	5	1274
MY00035	51	1	SAMPLA1STH	ROCK CHIPS	797671.1	7660881.941	174.884	319.61	6190	629	83	240	26	8044
MY00023	40	3	DUMPS NORTHAREA 1	ROCK CHIPS	800731.2	7658400.438	210.381	112.29	750	122	22	49	98	1493
MY00028	47	3	SAMPLE PILBARA	ROCK CHIPS	801079.6	7658633.44	213.514	102.09	130	193	21	19	5	267
MY00029	48	3	SAMPLE PILBAR A2	ROCK CHIPS	801063.1	7658822.353	222.882	96.74	110	286	16	17	113	212
MY00008	18a	4	PEGMATITE	ROCK CHIPS	801948.6	7654941.366	223.891	144.87	240	34	13	16	17	504
MY00009	18b	4	WEATHERED PEGMATITE	ROCK CHIPS	803254.9	7659244.838	226.187	86.73	3120	218	32	144	31	3038
MY00001	10 AND 11	5	PEGMATITE	ROCK CHIPS	799790.4	7657139.651	198.299	160.6	100	32	41	31	103	1491
MY00005	15	6	TIN? SAMPLE	ROCK CHIPS	801926.5	7654922.156	223.725	145.21	970	39	<1	140	31	174
MY00006	16	6	GREENVEIN SAMPLE PEGMATITE	ROCK CHIPS	801931.8	7654910.755	223.174	145.23	670	116	37	152	189	511
MY00007	17	6	WEATHERED PEGMATITE	ROCK CHIPS	801933.1	7654896.104	225.566	145.31	130	568	109	53	133	1064

Table 1. Significant Assay Results from Geochemical Sampling

Notes: All analytical results are in parts per million (ppm). Grid locations are in MGA 94 coordinates Zone 50.

5. **CONCLUSIONS**

The following conclusions are based on the results of the field investigation.

- 1. The Moolyella licence is considered highly prospective for potential presence of lithiumbearing pegmatites, in terms of its regional geological and mineralization setting which is strongly analogous to the host rocks of the numerous significant lithium deposits in the surrounding district.
- 2. Most of the previous exploration focused on just 10% of the Moolyella tenement, leaving many other areas within the project relatively under explored. Previous explorers concentrated their exploration on the Brockman Creek tributaries. They did not appear to consider the granite where the old Tin Mine is located (Area 6), which has a very good potential of hosting lithium mineralization.
- 3. At Area 1 Pegmatite Gully, the previous explorer's interpretation was flat lying pegmatites. In contrast, gently folded and subvertical dipping pegmatites with multiple repetitions striking N-S direction were observed. Potential strike extension of Area 1 to the south has been fully tested.
- 4. Field reconnaissance exercise has identified localised outcrops of pegmatites within some target areas. Approximately 70- 80 % of outcropped granitoid rocks at these areas associated with pegmatite (layers/ dykes) gentle to sub-vertical structural orientation.
- 5. At Area 6 an outstanding opportunity exists for potential mineralization associated with the observed granitic "dome-and keel" outcrop pattern, where mineralization was observed as sub-vertical swarms of pegmatite dykes ranging from narrow veining to 2-3m thickness. Prospective zones beneath this structure remain untested by drilling creating a potential for resources at depth. In addition, similar granitic structural patterns offer potential in the surrounding area.
- 6. Some of visited areas covers a deep mantle-tapping crustal-scale structure, the geology comprises approximately 20% of the land area, with the remaining 80% partly untested.
- 7. It is important to note that finding only low lithium grades at surface does not rule out mineralization at depth. The effect of strong weathering and outcrop depletion on the majority of minerals can result in surface depletion. (See diagram in Figure 34 for both lithium and rubidium).
- 8. Most LCT (Lithium-Caesium-Tantalum) pegmatite bodies show a distinctive internal zonation featuring four zones: border, wall, intermediate (where lithium zonation is expressed both in cross section and map view; thus, what may appear to be a common low grade pegmatite at surface may instead be the edge of a mineralized orebody. as illustrated on the model.

9. Evidence of strong post mineralization deformation (faulting, thrusting and folding) observed at some areas visited, may have a negative impact on target generation and future exploration.

6. **RECOMMENDATIONS**

Exploration should not repeat procedures and techniques which previous explorers adapted and applied, which failed to locate and discover mineralization. Sunmirror's exploration strategy should be based on applying advanced exploration models to generate quality targets which will save time and enhance the opportunity to make a discovery.

It is recommended that an initial program of fieldwork be undertaken which will allow for the ranking of prospect areas and and prioritisation for further exploration. It is considered important to undertake preliminary testing on areas identified as having previously had little attention from past explorers.

- 1. Area 1: It is highly recommended to carry-out a focused pilot RC drill program to test potential spodumene-bearing pegmatites along the N-S trending structure east of Area 1. The drill program should focus on testing mineralization along the 1.3 km strike length of potential mineralized pegmatite plunging to the south.
- 2. Area 2: A geochemical soil survey is recommended to test for any geochemical anomalies present within the cover of alluvium/colluvium.
- 3. Area 3: A geochemical soil survey is recommended to test for any geochemical anomalies present within the cover of alluvium/colluvium.
- 4. Area 4: It is highly recommended to carry out a focused geochemical survey over area 4, due to the presence of narrow pegmatite outcropping network covering most of area, the potential extension of wider pegmatite formation/ layers still exists at depth.
- 5. Area 5: Similar approach as per Area 4, due to the presence of scattered pegmatite outcropping and its strategic structural position.
- 6. Area 6: Geological mapping and rock chip sampling of the sub-vertical swarms of pegmatite dykes is recommended. The mapping should aim to delineate the structural geology so as to enable drill testing of buried targets between outcrops.

7. Figure 34 . Geochemical anomalies over the subservice at Tanco pegmatite (USGS 2017; SRK, 2018)

7. **REFERENCES**

Archibald, S. 2021, NI 43-101 Technical Report on the Moolyella Lithium Property, Western Australia.

Borg, B. 2012, Annual Report Title: Combined Annual Report E 45/3172 & E45/3424 Moolyella.

- Gardiner NJ, Hickman AH, Kirkland CL, Lu Y, Johnson TE and Wingate MTD. 2018, New Isotope Insights into the Paleoarchean Magmatic Evolution of the Mount Edgar Dome, Pilbara Craton: Implications for Early Earth and Crust Formation Processes. GSWA Report 181.
- Donegan L. 2014, Hard Rock Lithium Sources Particular Considerations for their Exploration and Mineral Resource Estimation Geological Society Lithium Conference Presentation

APPENDIX 1 - SAMPLING

Locations of where the samples were collected are shown on Figures 1 – 7.

Figure 1. The areas inside the tenement selected for sampling as marked with red and green dots sample locations

Table 1. GPS coordinate location and sample type of samples taken from the field trip.

abel	GPS SYMBOL	Symbol	Name on GPS	Comment	Type of Sample	Easting	Northing	Zone	Elevation
10	Blue Flag	Red Dot	10	PEGMATITE	ROCK CHIPS	799790.4	7657139.65	50K	198.29
11	Blue Flag	Red Dot	11	PEGMATITE	ROCK CHIPS	799760.82	7657176.65	50K	196.20
13	Blue Flag	Red Dot	13	TIN? SAMPLE	ROCK CHIPS	801884.7	7654851.89	50K	233.12
14	Blue Flag	Red Dot	14	GREEN VEIN SAMPLE PEGMATITE	ROCK CHIPS	801926.53	7654922.16	50K	223.72
15	Blue Flag	Red Dot	15	WEATHERED PEGMATITE	ROCK CHIPS	801931.82	7654910.76	50K	223.17
16	Blue Flag	Red Dot	16	PEGMATITE	ROCK CHIPS	801933.12	7654896.1	50K	225.56
17	Blue Flag	Red Dot	17	WEATHERED GREEN STAIN PEGMATITE	ROCK CHIPS	801948.6	7654941.37	50K	223.89
18	Blue Flag	Red Dot	18	PEGMATITE	ROCK CHIPS	803254.93	7659244.84	50K	226.1
22	Blue Flag	Red Dot	22	DUMP WORKINGS	ROCK CHIPS	798122.19	7660947.38	50K	181.00
23	Red Flag	Red Dot	23	DUMP WORKINGS	ROCK CHIPS	798125.76	7660937.67	50K	183.4
24	Blue Flag		24	PEGMATITE	NO SAMPLE	798854.01	7662030.31	50K	177.7
29	Blue Flag	Red Dot	29	DUMPS NORTH AREA 1 NORTH	ROCK CHIPS	800729.63	7660926.09	50K	207.6
30	Red Flag	Green Dot	30	DUMPS NORTH AREA 1 NORTH	SOILS	800731.82	7660875.19	50K	199.1
31	Blue Flag	Flag, Blue	31	DUMP ROCKCHIPS	ROCK CHIPS	800721.17	7658370.48	50K	220.5
32	Red Flag	Green Dot	32	FINES DUMPS SOILS	SOILS	800731.18	7658400.44	50K	210.3
33	Red Flag	Green Dot	33	CENTRAL SOIL DUMP	SOILS	800728.67	7658422.32	50K	212.4
34	Red Flag	Green Dot	34	SOILS FROM DUMPS	SOILS	800765.2	7658441.49	50K	217.6
35	Blue Flag	Red Dot	35	PEGMATITE ROCK CHIP SAMPLE	ROCK CHIPS	801359.76	7658784.35	50K	208.8
36	Blue Flag	Red Dot	36	PEGMATITE ROCK CHIP SAMPLE	ROCK CHIPS	800907.68	7658199.96	50K	212.6
37	Blue Flag	Red Dot	37	PEGMATITE ROCK CHIP SAMPLE	ROCK CHIPS	801079.64	7658633.44	50K	213.5
38	Blue Flag	Red Dot	38	PEGMATITE ROCK CHIP SAMPLE	ROCK CHIPS	801063.13	7658822.35	50K	222.8
40	Blue Flag	Red Dot	40	TAILINGS AREA 1	ROCK CHIPS	797656.12	7660994.91	50K	180.4
41	Blue Flag	Red Dot	41	TAILINGS AREA 2	ROCK CHIPS	797657.05	7660977.5	50K	176.0
42	Red Flag	Green Dot	42	TAILINGS AREA 3	SOILS	797657.08	7660961.76	50K	173.1
43	Blue Flag	Red Dot	43	TAILINGS AREA 4	ROCK CHIPS	797654.13	7660947.96	50K	176.3
44	Blue Flag	Red Dot	44	TAILINGS AREA 5	ROCK CHIPS	797671.13	7660881.94	50K	174.8
45	Blue Flag		45	PHOTO ONLY	NO SAMPLE	798406.52	7660813.47	50K	183.4
46	Blue Flag		46	EDDY'S EAST TIN PLANT PHOTO	NO SAMPLE	798408.94	7660803.56	50K	187.2
47	Blue Flag	Red Dot	47	SAMPLE PILBARA	ROCK CHIPS	798410.25	7660806.64	50K	188.6
48	Blue Flag	Red Dot	48	SAMPLE PILBARA2	ROCK CHIPS	798423.48	7660704.9	50K	182.5
49	Blue Flag	Red Dot	49	PEGMATITE A1 Sample	ROCK CHIPS	800318.34	7660482.12	50K	194.3
50	Blue Flag	Red Dot	50	PEGMATITE A1 Sample	ROCK CHIPS	801119.34	7659366.88	50K	203.7
51	Blue Flag	Red Dot	51	PEGMATITE A1 Sample	ROCK CHIPS	801051.39	7658902.13	50K	220.4
52	Blue Flag	Red Dot	52	SAMPLE A1 SOUTH	ROCK CHIPS	801124.4	7658915.1	50K	217.5
53	Blue Flag	Red Dot	53	SAMPLE A1 SOUTH	ROCK CHIPS	801122	7658914.7	50K	216.8

Figure 2. Area 1 Central area, the samples in this area were mainly taken in the pegmatite outcrops except for Samples 31 to 34 were samples from the waste dumps.

Figure 3. Area 1- Northern End. Samples 29 and 30 are near waste dumps and Sample 49 is in Area with significant outcrops of pegmatite

Figure 4. Samples 22 and 23 are from the historical Eddy's Plant , and samples 46 to 48 were taken around the historical Pilbara Plant Area.

Figure 5. Samples 41 to 44 are taking around the old tailings dumps

Figure 6. Area 4 Sample location of Lithium Assay grade with 3120ppm and Rubidium 3038ppm

Figure 7. Samples 10 and 11 were pegmatites sampled in the area at the junction of the NW -SE trending faults

Figure 8. Samples 13 to 17 are samples around the pegmatites in the granite which was historically a small scale Tin mine.

APPENDIX 2 – PETROLOGY

Photographs of samples prepared and sent for Petrology Analysis

APPENDIX 3 – ANALYTICAL RESULTS

NAGROM the mineral processor

Geonomik Pty Ltd

Analytical Report

REFERENCE REPORT DATE SAMPLES DATE RECEIVED KM-2108-057001 August 23 2021 28 July 22 2021

AUTHORISATION

und

Adam Pound - Laboratory Manager

CLIENT ADDRESS CONTACT PROJECT P/O#

Geonomik Pty Ltd

PTH.KM Moolyella SUB 1

KM-2108-057001	Dy	Er	Eu	Gd	Но	Li	Lu	Nb	Ce	Nd	Pr	Sm	Sn	Та	Tb	Th	Tm	U
Method	ICP004																	
Units	ppm																	
LLD	0.5	0.1	0.5	0.5	0.1	10	0.5	5	1	1	0.5	0.5	1	1	0.1	0.5	0.1	1
MY00001	2.5	0.5	<0.5	2.5	0.4	100	<0.5	65	14	5	1.0	1.5	32	41	0.5	3.5	0.1	5.0
MY00003	2.0	0.5	<0.5	2.5	0.4	20	<0.5	90	30	11	2.5	1.5	12	92	0.4	4.0	0.2	2.0
MY00004	1.5	0.4	1.0	2.0	0.3	<10	<0.5	20	28	9	2.5	1.0	4	<1	0.3	11.0	0.1	<1
MY00005	5.0	1.9	3.0	7.5	1.0	970	<0.5	15	147	69	18.0	11.5	39	<1	0.9	13.0	0.3	3.0
MY00006	2.5	1.1	1.0	3.0	0.6	670	<0.5	20	72	26	6.5	3.0	116	37	0.5	9.0	0.2	3.0
MY00006 REP	2.5	0.8	1.0	3.0	0.5	680	<0.5	25	71	24	7.0	3.0	104	37	0.5	8.5	0.2	2.0
MY00007	2.5	<0.1	<0.5	3.0	0.3	130	<0.5	70	7	3	<0.5	1.5	568	109	0.5	5.0	<0.1	4.0
MY00008	8.5	5.7	<0.5	5.5	1.9	240	1.0	20	24	9	2.5	2.5	34	13	1.2	22.0	0.9	6.0
MY00009	4.0	1.2	1.0	6.0	0.6	3120	<0.5	65	116	41	12.5	7.0	218	32	0.8	15.5	0.2	4.0
MY00010	1.0	0.7	<0.5	1.0	0.3	80	<0.5	5	16	4	1.0	<0.5	11	3	0.2	5.0	<0.1	1.0
MY00011	2.0	0.5	<0.5	2.5	0.3	70	<0.5	25	30	10	2.5	1.5	505	27	0.3	7.0	0.2	1.0
MY00012	7.0	3.1	1.5	8.0	1.4	90	<0.5	20	155	61	17.0	9.5	64	6	1.2	18.5	0.5	1.0
MY00014	1.0	<0.1	<0.5	1.5	0.1	1070	<0.5	90	17	6	1.5	1.0	154	67	0.2	7.5	<0.1	2.0
MY00017	2.0	<0.1	<0.5	1.5	0.2	90	<0.5	60	9	4	0.5	<0.5	162	32	0.4	5.5	0.1	2.0
MY00019	2.0	<0.1	<0.5	3.0	0.3	150	<0.5	65	6	3	1.0	1.5	40	26	0.4	4.5	0.1	1.0
MY00019 DUP	3.5	0.8	<0.5	3.5	0.5	160	<0.5	50	6	3	1.0	1.5	41	24	0.8	5.0	0.2	1.0
MY00020	2.0	0.2	1.0	2.5	0.3	50	<0.5	25	24	15	4.0	3.0	2	5	0.4	19.5	<0.1	1.0
MY00021	1.5	<0.1	<0.5	1.5	0.2	460	<0.5	75	12	7	2.0	2.0	80	22	0.3	10.0	<0.1	2.0
MY00022	2.0	0.2	<0.5	2.5	0.2	170	<0.5	70	15	8	2.0	2.5	22	25	0.5	7.5	<0.1	7.0
MY00023	2.5	<0.1	<0.5	5.5	0.3	750	<0.5	70	29	14	3.5	5.5	122	22	0.7	12.5	<0.1	2.0
MY00024	0.5	<0.1	0.5	1.0	0.2	10	<0.5	10	43	13	4.0	1.5	14	3	0.1	7.0	<0.1	<1
MY00026	1.0	<0.1	<0.5	1.0	0.1	50	<0.5	10	5	3	1.0	<0.5	15	2	<0.1	5.5	<0.1	<1
MY00027	1.0	<0.1	<0.5	1.5	<0.1	<10	<0.5	20	10	6	1.5	1.0	11	8	0.2	4.0	<0.1	<1
MY00028	2.0	0.7	1.0	2.5	0.4	130	<0.5	25	47	19	5.5	3.0	193	21	0.4	8.5	0.2	2.0
MY00029	2.0	0.9	0.5	2.0	0.5	110	<0.5	20	32	13	3.5	1.5	286	16	0.3	6.0	0.1	1.0
MY00030	1.5	<0.1	<0.5	1.5	0.1	260	<0.5	65	4	3	1.0	1.0	318	25	0.3	2.0	<0.1	3.0
MY00033	1.0	<0.1	<0.5	1.5	<0.1	130	<0.5	80	6	3	1.0	<0.5	29	39	0.2	11.0	<0.1	2.0
MY00034	1.5	<0.1	<0.5	3.5	0.2	680	<0.5	75	28	12	3.5	4.0	158	34	0.5	10.0	0.1	3.0
MY00035	4.5	<0.1	1.5	9.5	0.5	6190	<0.5	110	119	61	15.5	12.0	629	83	1.4	12.5	0.1	2.0
MY00035 REP	5.0	0.2	1.5	11.0	0.4	6300	<0.5	100	123	65	16.5	12.5	653	82	1.4	11.0	<0.1	1.0
MY00036	1.0	<0.1	0.5	3.0	0.2	30	<0.5	10	38	17	5.0	3.0	8	2	0.3	11.0	<0.1	1.0
OREAS147 STD	9.0	2.4	10.5	21.0	1.3	2280	<0.5	1160	1148	384	121.5	47.0	709	19	2.3	88.0	0.3	15.0
OREAS147 STD	8.5	2.1	10.5	21.0	1.2	2260	<0.5	1155	1142	380	118.5	47.0	677	19	2.1	86.5	0.3	15.0
OREAS461 STD	35.0	9.0	47.0	101.5	4.9	20	0.5	1340	3631	1685	497.0	220.0	25	27	9.5	204.5	0.9	5.0
OREAS461 STD	33.0	8.3	45.5	97.5	4.6	20	<0.5	1390	3502	1627	478.0	216.5	24	26	9.2	206.0	0.8	5.0
OREAS464 STD	176.0	38.1	323.5	678.0	20.9	<10	1.5	1860	15350	9807	2601.0	1498.0	39	25	54.0	534.5	3.3	17.0
OREAS464 STD	174.0	36.9	321.0	676.0	20.9	50	1.5	1825	15280	9672	2604.0	1503.0	40	23	54.2	543.5	3.3	18.0

KM-2108-057001	Y	Yb	Cs	Ве	Rb
Method	ICP004	ICP004	ICP004	ICP004	ICP004
Units	ppm	ppm	ppm	ppm	ppm
LLD	1	0.5	1	1	1
MY00001	11	1.0	31	103	1491
MY00003	10	1.0	49	149	1375
MY00004	7	0.5	4	2	95
MY00005	24	2.5	140	31	174
MY00006	13	2.0	152	189	511
MY00006 REP	13	1.5	154	185	521
MY00007	10	<0.5	53	133	1064
MY00008	54	6.0	16	17	504
MY00009	20	1.5	144	31	3038
MY00010	7	1.5	16	5	416
MY00011	10	1.0	23	72	819
MY00012	37	3.5	14	3	945
MY00014	5	<0.5	108	59	2105
MY00017	9	1.0	26	23	1401
MY00019	11	1.0	14	4	1038
MY00019 DUP	13	1.0	14	5	1042
MY00020	8	0.5	21	2	522
MY00021	7	<0.5	28	7	1401
MY00022	10	<0.5	19	163	1155
MY00023	11	<0.5	49	98	1493
MY00024	3	<0.5	5	2	317
MY00026	4	<0.5	15	4	811
MY00027	3	<0.5	9	2	623
MY00028	12	1.5	19	5	267
MY00029	11	1.0	17	113	212
MY00030	6	<0.5	35	12	2212
MY00033	4	<0.5	20	2	1429
MY00034	8	<0.5	30	5	1274
MY00035	18	0.5	240	26	8044
MY00035 REP	19	<0.5	244	27	8252
MY00036	5	<0.5	4	2	154
OREAS147 STD	28	2.0	231	37	1193
OREAS147 STD	27	1.5	228	37	1183
OREAS461 STD	93	4.5	2	4	16
OREAS461 STD	91	4.5	<1	1	13
OREAS464 STD	449	13.0	<1	16	5
OREAS464 STD	445	12.5	1	19	4

NAGROM the mineral processor

Geonomik Pty Ltd

Analytical Report

REFERENCE REPORT DATE SAMPLES DATE RECEIVED KM-2108-057002 August 23 2021 5 July 22 2021

AUTHORISATION

Adam Pound - Laboratory Manager

CLIENT ADDRESS CONTACT PROJECT P/O#

Geonomik Pty Ltd

PTH.KM Moolyella SUB 1

	KM-2108-057002	Au	Ce	Dy	Er	Eu	Gd	Но	Li	Lu	Nb	Nd	Pr	Sm	Sn	Та	ть	Th
	Method	FA50	ICP004															
	Units	ppm																
_	LLD	0.001	1	0.5	0.1	0.5	0.5	0.1	10	0.5	5	1	0.5	0.5	1	1	0.1	0.5
	MY00013	0.001	22	1.5	0.2	<0.5	1.5	0.2	60	<0.5	35	7	2.0	1.0	714	34	0.2	4.5
	MY00015	<0.001	17	1.0	0.2	<0.5	2.0	0.2	60	<0.5	20	5	1.5	1.0	99	14	0.2	4.5
	MY00015 REP		21	1.5	0.3	<0.5	2.0	0.2	60	<0.5	20	5	1.5	1.0	93	13	0.3	4.5
	MY00016	<0.001	19	1.5	0.2	<0.5	2.0	0.4	90	<0.5	30	6	1.5	1.0	65	16	0.3	7.0
	MY00018	<0.001	37	2.0	0.7	0.5	2.5	0.4	70	<0.5	105	11	3.5	2.0	143	90	0.5	10.5
	MY00025	0.002	26	2.0	0.5	<0.5	2.0	0.4	120	<0.5	25	10	2.5	1.0	38	12	0.3	6.0
	MY00025 REP	0.002																
	OXC168 STD	0.212																
	OXL159 STD	5.860																
	OREAS461 STD		3515	33.0	8.0	45.5	102.0	4.6	10	0.5	1365	1615	482.0	214.0	25	26	9.2	205.5
	GBMS911-1 STD		46	5.0	2.6	1.0	4.5	1.0	20	0.5	20	18	4.5	3.5	10	2	0.7	17.5

KM-2108-057002	Tm	U	Y	Yb	Cs	Be	Rb	As	Co	Cr	Cu	Ni	Pb	S	v	Zn
Method	ICP004															
Units	ppm															
LLD	0.1	1	1	0.5	1	1	1	100	50	50	50	100	100	100	100	100
MY00013	<0.1	2.0	7	1.0	18	70	910	<100	<50	<50	<50	<100	<100	<100	<100	<100
MY00015	0.1	1.0	7	1.0	11	38	372	<100	<50	<50	<50	<100	<100	<100	<100	<100
MY00015 REP	<0.1	1.0	7	0.5	11	38	369	<100	<50	<50	<50	<100	<100	<100	<100	<100
MY00016	0.1	1.0	9	1.0	13	9	366	<100	<50	<50	<50	<100	<100	200	<100	<100
MY00018	0.2	1.0	12	1.0	11	11	331	<100	<50	<50	<50	<100	<100	<100	<100	<100
MY00025	0.1	2.0	10	1.0	15	16	447	<100	<50	<50	<50	<100	<100	600	<100	<100
MY00025 REP																
OXC168 STD																
OXL159 STD																
OREAS461 STD	0.8	5.0	91	4.0	2	1	14	<100	<50	600	50	<100	100	500	400	200
GBMS911-1 STD	0.4	9.0	29	3.0	3	2	137	400	<50	<50	10000	<100	6100	13700	200	1200

APPENDIX 4 – HYPER LINKS

- 1. VIDEO AREAS SELECTED <u>D:\ONEDRIVE\MOLYELLA\APPENDIX MOOLYELLA SITE VISIT JULY 7 2021</u>
- 2. SAMPLES WITH GPS NUMBERS

D:\ONEDRIVE\MOLYELLA\APPENDIX MOOLYELLA SITE VISIT JULY 7 2021\MOOLYELLA FINAL PHOTOS WITH GPS